104 research outputs found

    Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles

    Get PDF
    We applied the recently introduced polarization lidar–photometer networking (POLIPHON) technique for the first time to triple-wavelength polarization lidar measurements at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the new, extended approach to separate even the fine and coarse dust backscatter fractions. We show that the traditional and the advanced method are compatible and lead to a consistent set of dust and non-dust profiles at simplified, less complex aerosol layering and mixing conditions as is the case over the remote tropical Atlantic. To derive dust mass concentration profiles from the lidar observations, trustworthy extinction-to-volume conversion factors for fine, coarse, and total dust are needed and obtained from an updated, extended Aerosol Robotic Network sun photometer data analysis of the correlation between the fine, coarse and total dust volume concentration and the respective fine, coarse, and total dust extinction coefficient for all three laser wavelengths. Conversion factors (total volume to extinction) for pure marine aerosol conditions and continental anthropogenic aerosol situations are presented in addition. As a new feature of the POLIPHON data analysis, the Raman lidar method for particle extinction profiling is used to identify the aerosol type (marine or anthropogenic) of the non-dust aerosol fraction. The full POLIPHON methodology was successfully applied to a SALTRACE case and the results are discussed. We conclude that the 532 nm polarization lidar technique has many advantages in comparison to 355 and 1064 nm polarization lidar approaches and leads to the most robust and accurate POLIPHON products

    Potential of polarization lidar to provide profiles of CCN-and INP-relevant aerosol parameters

    Get PDF
    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius  > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius  >  100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius  >  250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5–2 in the case of n50, dry and n100, dry and of about 25–50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute profiles of the CCN-relevant particle number concentration nCCN and the INP number concentration nINP. We apply the method to a lidar observation of a heavy dust outbreak crossing Cyprus and a case dominated by continental aerosol pollution

    Retrieval of the optical properties of tropospheric aerosols over Athens, Greece combining a 6-wavelength Raman-lidar and the CALIPSO VIS-NIR lidar system: Case-study analysis of a Saharan dust intrusion over the Eastern Mediterranean

    Get PDF
    The National Technical University of Athens (NTUA) 6-wavelength (355, 387, 407, 532, 607 and 1064 nm) Raman lidar system has been used to derive the aerosol optical properties (e.g. the lidar ratio, the aerosol backscatter and extinction profile) and the water vapour mixing ratios over Athens, Greece during the CALIPSO space lidar overpasses over our area at 355, 532 and 1064 nm. These data have been analyzed for the case of a Saharan dust intrusion over the Eastern Mediterranean, occurred on January 26, 2007, using concurrent aerosol optical depth (AOD) data at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) and forecasted data from the Dust Regional Atmospheric Modeling (DREAM) model

    Optical-microphysical Properties of Saharan Dust Aerosols and Composition Relationship Using a Multi-wavelength Raman Lidar, in Situ Sensors and Modelling: a Case Study Analysis

    Get PDF
    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR 355/532) and Ångström-extinction-related (AER 355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition consistent with the retrieved refractive index values. Thus, the inferred chemical properties showed 12-40% of dust content, sulfate composition of 16-60%, and organic carbon content of 15-64%, indicating a possible mixing of dust with haze and smoke. PM10 concentrations levels, PM10 composition results and SEM-EDX (Scanning Electron Microscope-Energy Dispersive X-ray) analysis results on sizes and mineralogy of particles from samples during the Saharan dust transport event were used to evaluate the retrieval

    Six-month ground-based water vapour raman lidar measurements over Athens, Greece and system validation

    Get PDF
    Water vapour is one of the most important greenhouse gases, since it causes about two third of the natural greenhouse effect of the Earth's atmosphere. To improve the understanding of the role of the water vapour in the atmosphere, extensive water vapour profiles with high spatio-temporal resolution are therefore necessary. A ground-based Raman lidar system is used to perform water vapour measurements in Athens, Greece (37.9°N, 23.6°E, 200 m asi.). Water vapour mixing ratio measurements are retrieved from simultaneous inelastic H2O and N2 Raman backscatter lidar signals at 387 nm (from atmospheric N2) and 407 nm (from H2O). Systematic measurements are performed since September 2006. A new algorithm is used to retrieve water vapour vertical profiles in the lower troposphere (0.5-5 km range height asl.). The lidar observations are complemented with radiosonde measurements. Radiosonde data are obtained daily (at 00:00 UTC and 12:00 UTC) from the Hellenic Meteorological Service (HMS) of Greece which operates a meteorological station at the "Hellinikon" airport (37. 54° N, 23.44° E, 15m asl) in Athens, Greece. First results of the systematic intercomparison between water vapour profiles derived simultaneously by the Raman lidar and by radiosondes are presented and discussed

    Extreme dust storm over the eastern Mediterranean in September 2015: Satellite, lidar, and surface observations in the Cyprus region

    Get PDF
    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly >  10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility) was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze

    Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds

    Get PDF
    We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution. © 2019 The Authors, published by EDP Sciences

    D7.1 Report on the ECoE research clusters and research groups: management, function and technical capacity

    Get PDF
    This deliverable focuses on the formation of the Eratosthenes Centre of Excellence thematic research clusters of Environment & Climate, the Resilient Society and Big Earth Data Analytics in terms of the operations, research collaborations, tools to facilitate research, agreeing internal structures and allocating staff responsibilities. This deliverable will focus on the integration of recruited research personnel, research equipment and the Strategic Partners’ expertise to meet the needs of the research groups

    The Establishment of the EXcellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR) for the Eastern Mediterranean Region

    Get PDF
    The aim of this paper is to present our vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services on the National, European and International levels. The implementation of the vision will be addressed through a robust Business Plan that will be developed with in Phase 1 of EXCELSIOR project and will establish the foundations for the development of a competitive and high competence profile to expand the Centre’s visibility beyond the national level and develop transnational regional cooperation. The Business Plan is key to ensure the sustainability of the CoE and will also provide the necessary guarantees for a self-sustained operation. The long term aim of the upgraded Centre is to create new opportunities for conducting basic and applied research and innovation (R&I) in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment

    Assimilating spaceborne lidar dust extinction can improve dust forecasts

    Get PDF
    Atmospheric mineral dust has a rich tri-dimensional spatial and temporal structure that is poorly constrained in forecasts and analyses when only column-integrated aerosol optical depth (AOD) is assimilated. At present, this is the case of most operational global aerosol assimilation products. Aerosol vertical distributions obtained from spaceborne lidars can be assimilated in aerosol models, but questions about the extent of their benefit upon analyses and forecasts along with their consistency with AOD assimilation remain unresolved. Our study thoroughly explores the added value of assimilating spaceborne vertical dust profiles, with and without the joint assimilation of dust optical depth (DOD). We also discuss the consistency in the assimilation of both sources of information and analyse the role of the smaller footprint of the spaceborne lidar profiles in the results. To that end, we have performed data assimilation experiments using dedicated dust observations for a period of 2 months over northern Africa, the Middle East, and Europe. We assimilate DOD derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) on board Suomi National Polar-Orbiting Partnership (SUOMI-NPP) Deep Blue and for the first time Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP)-based LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) pure-dust extinction coefficient profiles on an aerosol model. The evaluation is performed against independent ground-based DOD derived from AErosol RObotic NETwork (AERONET) Sun photometers and ground-based lidar dust extinction profiles from the Cyprus Clouds Aerosol and Rain Experiment (CyCARE) and PREparatory: does dust TriboElectrification affect our ClimaTe (Pre-TECT) field campaigns. Jointly assimilating LIVAS and Deep Blue data reduces the root mean square error (RMSE) in the DOD by 39 % and in the dust extinction coefficient by 65 % compared to a control simulation that excludes assimilation. We show that the assimilation of dust extinction coefficient profiles provides a strong added value to the analyses and forecasts. When only Deep Blue data are assimilated, the RMSE in the DOD is reduced further, by 42 %. However, when only LIVAS data are assimilated, the RMSE in the dust extinction coefficient decreases by 72 %, the largest improvement across experiments. We also show that the assimilation of dust extinction profiles yields better skill scores than the assimilation of DOD under an equivalent sensor footprint. Our results demonstrate the strong potential of future lidar space missions to improve desert dust forecasts, particularly if they foresee a depolarization lidar channel to allow discrimination of desert dust from other aerosol types.This work received funding from the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie (grant no. 754433)), the European Research Council (FRAGMENT (grant no. 773051)), and the AXA Research Fund. We were also supported by the Ministerio de Ciencia, Innovación y Universidades (MICINN), as part of the BROWNING project RTI2018-099894-B-I00 and NUTRIENT project CGL2017-88911-R, along with PRACE and RES for awarding access to Marenostrum4 based in Spain at the Barcelona Supercomputing Center through the eFRAGMENT2 and AECT2020-1-0007 projects. Martina Klose received funding from the European Union’s Horizon 2020 research and innovation programme (Marie Skłodowska-Curie (grant no. 789630)). Martina Klose was also supported by the Helmholtz Association’s Initiative and Networking Fund (grant no. VH-NG-1533). Vassilis Amiridis and Eleni Marinou were supported by ERC Consolidator Grant 2016 D-TECT: “Does dust TriboElectrification affect our ClimaTe?” (grant no. 725698). Eleni Marinou was supported by a DLR VO-R young investigator group and the Deutscher Akademischer Austauschdienst (grant no. 57370121). Emmanouil Proestakis was supported by the project PANhellenic infrastructure for Atmospheric Composition and climatE change (grant no. MIS5021516), which is implemented under the Action Reinforcement of the Research and Innovation Infrastructure, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (grant no. NSRF2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). This research was supported by the German–Israeli Foundation for Scientific Research and Development (GIF, grant no. I1262-401.10/2014), the European Union’s Framework Programme for Research and Innovation, Horizon 2020 (ACTRIS-2, grant no. 654109), and the former European Commission Seventh Framework Programme FP7/2007–2013 (ACTRIS (grant no. 262254) and BACCHUS (grant no. 603445)).Peer ReviewedObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::13 - Acció per al Clima::13.3 - Millorar l’educació, la conscienciació i la capacitat humana i institucional en relació amb la mitigació del canvi climàtic, l’adaptació a aquest, la reducció dels efectes i l’alerta primerencaPostprint (published version
    corecore